99 research outputs found

    Optimising oscillating waveform-shape for pore size sensitivity in diffusion-weighted MR

    Get PDF
    Optimising the shape of a generalised gradient waveform (GEN) in diffusion-weighted MR has been shown to, in theory, greatly increase sensitivity to pore size. The broad class of optimised shapes takes simple oscillatory forms. To speed up convergence of the optimisation, improve computation times and make the waveforms more practical, here we explore various oscillatory waveforms constructed from trapezoidal and sinusoidal shapes and compare their performance with the optimised GEN waveform. The oscillating waveforms are optimised to maximise sensitivity to parameters, such as axon radius, intra-cellular volume fraction and diffusion constants, of a simple white matter model. Simulation experiments find that all oscillating waveforms we tried perform significantly better than the original generalised waveform due to the improved convergence of the optimisation. Differences among the oscillating shapes however are very small and although a truncated sinusoidal waveform consistently gives the lowest cost function, no significant difference in the estimated model parameters was found. Therefore the simplest choice, i.e. the trapezoidal parametrisation, seems sufficient for most practical purposes

    Double oscillating diffusion encoding and sensitivity to microscopic anisotropy

    Get PDF
    PURPOSE: To introduce a novel diffusion pulse sequence, namely double oscillating diffusion encoding (DODE), and to investigate whether it adds sensitivity to microscopic diffusion anisotropy (µA) compared to the well-established double diffusion encoding (DDE) methodology. METHODS: We simulate measurements from DODE and DDE sequences for different types of microstructures exhibiting restricted diffusion. First, we compare the effect of varying pulse sequence parameters on the DODE and DDE signal. Then, we analyse the sensitivity of the two sequences to the microstructural parameters (pore diameter and length) which determine µA. Finally, we investigate specificity of measurements to particular substrate configurations. RESULTS: Simulations show that DODE sequences exhibit similar signal dependence on the relative angle between the two gradients as DDE sequences, however, the effect of varying the mixing time is less pronounced. The sensitivity analysis shows that in substrates with elongated pores and various orientations, DODE sequences increase the sensitivity to pore diameter, while DDE sequences are more sensitive to pore length. Moreover, DDE and DODE sequence parameters can be tailored to enhance/suppress the signal from a particular range of substrates. CONCLUSIONS: A combination of DODE and DDE sequences maximize sensitivity to µA, compared to using just the DDE method. Magn Reson Med, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine

    Physical and digital phantoms for validating tractography and assessing artifacts

    Get PDF
    Fiber tractography is widely used to non-invasively map white-matter bundles in vivo using diffusion-weighted magnetic resonance imaging (dMRI). As it is the case for all scientific methods, proper validation is a key prerequisite for the successful application of fiber tractography, be it in the area of basic neuroscience or in a clinical setting. It is well-known that the indirect estimation of the fiber tracts from the local diffusion signal is highly ambiguous and extremely challenging. Furthermore, the validation of fiber tractography methods is hampered by the lack of a real ground truth, which is caused by the extremely complex brain microstructure that is not directly observable non-invasively and that is the basis of the huge network of long-range fiber connections in the brain that are the actual target of fiber tractography methods. As a substitute for in vivo data with a real ground truth that could be used for validation, a widely and successfully employed approach is the use of synthetic phantoms. In this work, we are providing an overview of the state-of-the-art in the area of physical and digital phantoms, answering the following guiding questions: “What are dMRI phantoms and what are they good for?”, “What would the ideal phantom for validation fiber tractography look like?” and “What phantoms, phantom datasets and tools used for their creation are available to the research community?”. We will further discuss the limitations and opportunities that come with the use of dMRI phantoms, and what future direction this field of research might take

    Quality Assessment of Ambulatory ECG Using Wavelet Entropy of the HRV signal

    Get PDF
    Data in recordings obtained from ambulatory patients using wearable sensors are often corrupted by motion artefact and are, in general noisier, than data obtained from non-mobile patients. Identifying and ignoring erroneous measurements from these data is very important, if wearable sensors are to be incorporated into clinical practice. In this paper we propose a novel Signal Quality Index (SQI), intended to assess whether reliable heart rates (HR) can be obtained from a single channel of ECG collected from ambulatory patients, using wearable sensors. The proposed system is based on wavelet entropy measurements of the heart rate variability (HRV) signal. The system was trained and tested on expertly labeled data from a particular wearable sensor and was also tested on labeled data from a different sensor. The sensitivities and specificities achieved were 94% and 98%, respectively, on data from the same sensor as the training set, and 91% and 97%, respectively, on data from a different sensor, indicating the potential of the system to generalize across different sensors. Because the system relies on a single channel of ECG it has the potential for inclusion in applications using wearable sensors and in the most basic clinical environments

    Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain

    Get PDF
    Microscopic diffusion anisotropy (μA) has been recently gaining increasing attention for its ability to decouple the average compartment anisotropy from orientation dispersion. Advanced diffusion MRI sequences, such as double diffusion encoding (DDE) and double oscillating diffusion encoding (DODE) have been used for mapping μA, usually using measurements from a single b shell. However, the accuracy of μA estimation vis-à-vis different b-values was not assessed. Moreover, the time-dependence of this metric, which could offer additional insights into tissue microstructure, has not been studied so far. Here, we investigate both these concepts using theory, simulation, and experiments performed at 16.4T in the mouse brain, ex-vivo. In the first part, simulations and experimental results show that the conventional estimation of microscopic anisotropy from the difference of D(O)DE sequences with parallel and orthogonal gradient directions yields values that highly depend on the choice of b-value. To mitigate this undesirable bias, we propose a multi-shell approach that harnesses a polynomial fit of the signal difference up to third order terms in b-value. In simulations, this approach yields more accurate μA metrics, which are similar to the ground-truth values. The second part of this work uses the proposed multi-shell method to estimate the time/frequency dependence of μA. The data shows either an increase or no change in μA with frequency depending on the region of interest, both in white and gray matter. When comparing the experimental results with simulations, it emerges that simple geometric models such as infinite cylinders with either negligible or finite radii cannot replicate the measured trend, and more complex models, which, for example, incorporate structure along the fibre direction are required. Thus, measuring the time dependence of microscopic anisotropy can provide valuable information for characterizing tissue microstructure

    A supervised learning approach for diffusion MRI quality control with minimal training data

    Get PDF
    Quality control (QC) is a fundamental component of any study. Diffusion MRI has unique challenges that make manual QC particularly difficult, including a greater number of artefacts than other MR modalities and a greater volume of data. The gold standard is manual inspection of the data, but this process is time-consuming and subjective. Recently supervised learning approaches based on convolutional neural networks have been shown to be competitive with manual inspection. A drawback of these approaches is they still require a manually labelled dataset for training, which is itself time-consuming to produce and still introduces an element of subjectivity. In this work we demonstrate the need for manual labelling can be greatly reduced by training on simulated data, and using a small amount of labelled data for a final calibration step. We demonstrate its potential for the detection of severe movement artefacts, and compare performance to a classifier trained on manually-labelled real data

    A Simulation Framework for Quantitative Validation of Artefact Correction in Diffusion MRI

    Get PDF
    In this paper we demonstrate a simulation framework that enables the direct and quantitative comparison of post-processing methods for diffusion weighted magnetic resonance (DW-MR) images. DW-MR datasets are employed in a range of techniques that enable estimates of local microstructure and global connectivity in the brain. These techniques require full alignment of images across the dataset, but this is rarely the case. Artefacts such as eddy-current (EC) distortion and motion lead to misalignment between images, which compromise the quality of the microstructural measures obtained from them. Numerous methods and software packages exist to correct these artefacts, some of which have become de-facto standards, but none have been subject to rigorous validation. The ultimate aim of these techniques is improved image alignment, yet in the literature this is assessed using either qualitative visual measures or quantitative surrogate metrics. Here we introduce a simulation framework that allows for the direct, quantitative assessment of techniques, enabling objective comparisons of existing and future methods. DW-MR datasets are generated using a process that is based on the physics of MRI acquisition, which allows for the salient features of the images and their artefacts to be reproduced. We demonstrate the application of this framework by testing one of the most commonly used methods for EC correction, registration of DWIs to b = 0, and reveal the systematic bias this introduces into corrected datasets

    Why should standard eddy-current distortion correction techniques be avoided even for moderately high b-value data?

    Get PDF
    This work highlights issues with the current practice for correcting eddy-current distortions on moderately high b-value data and demonstrates their mitigation with a simple alternative. Both techniques are evaluated on real and simulated data, and the importance of EC correction for estimating microstructure is illustrated with the NODDI model. We demonstrate that correcting moderately high b-value data with standard EC correction techniques introduces distortion that compromises the anatomical correspondence between the DWIs and leads to questionable estimates of microstructural features. We show our alternative circumvents these issues and provides good correction

    Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement

    Get PDF
    Most motion correction methods work by aligning a set of volumes together, or to a volume that represents a reference location. These are based on an implicit assumption that the subject remains motionless during the several seconds it takes to acquire all slices in a volume, and that any movement occurs in the brief moment between acquiring the last slice of one volume and the first slice of the next. This is clearly an approximation that can be more or less good depending on how long it takes to acquire one volume and in how rapidly the subject moves. In this paper we present a method that increases the temporal resolution of the motion correction by modelling movement as a piecewise continous function over time. This intra-volume movement correction is implemented within a previously presented framework that simultaneously estimates distortions, movement and movement-induced signal dropout. We validate the method on highly realistic simulated data containing all of these effects. It is demonstrated that we can estimate the true movement with high accuracy, and that scalar parameters derived from the data, such as fractional anisotropy, are estimated with greater fidelity when data has been corrected for intra-volume movement. Importantly, we also show that the difference in fidelity between data affected by different amounts of movement is much reduced when taking intra-volume movement into account. Additional validation was performed on data from a healthy volunteer scanned when lying still and when performing deliberate movements. We show an increased correspondence between the “still” and the “movement” data when the latter is corrected for intra-volume movement. Finally we demonstrate a big reduction in the telltale signs of intra-volume movement in data acquired on elderly subjects
    corecore